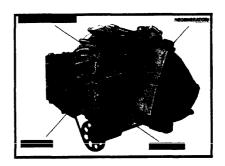
AlliedSignal Ceramic Components Cost Effective Ceramics

Barry Draskovich
Chein-Wei Li
Julie Schoenung
Douglas Twait
J. Wimmer
Harry Yeh

Automotive R&D Poster Session

Annual Automotive Technology Development Customers' Coordination Meeting

October 30, 1996

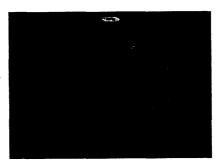


Development of a Production-Viable Manufacturing Process for AS800 Silicon Nitride Components

Allison Engine Company Contract DEN3-336
ASCC Project Manager: Douglas Twait
2525 West 190th Street
Torrance, CA 90504
(310) 512-2608

Objectives:

- Cost-Effective Production Process for the Allison Hybrid Vehicle Turbine Engine-Technology Support (HVTE-TS) Program
- Deliver Engine Hardware
 - Turbine Rotor
 - Thin-Walled Combustor


Approach:

- Near-Net Shape Process
- Permanent Molds
- Gelcast AS800 In-Situ Reinforced Si₃N₄

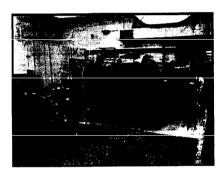
Accomplishments:

- Molds Fabricated, Gelcasting Parameters Established
- Turbine Rotor Machining Development Underway
- Combustor Machining Developed
- Combustors Delivered to Allison

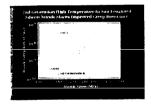
- Deliver Turbine Rotors for Test
- Develop Improved Combustor Mold Core Technology

In-Situ Toughened Si₃N₄

Harry Yeh AlliedSignal Ceramic Components 2525 West 190th Street Torrance, CA 90504 (310) 512-5634 Chien-Wei Li AlliedSignal Technology Team 101 Columbia Rd. Morristown, NJ 07962 (201) 455-5301

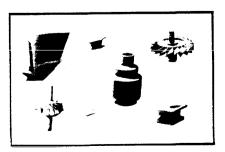

Objectives:

 Improve Properties and Processing of an In-Situ Toughened Silicon Nitride for Heat Engine Applications


Approach:

- Improved Properties and Processing of Lab Scale Material Through Composition and Process Optimization
- Optimize Material to Production Scale
- Demonstrate Component Fabrication Capability
- Establish Expanded Database
- Develop 2nd Generation Material with Higher Temperature Capability to Meet Future Heat Engine Needs

Accomplishments:


- Material Properties Meet Heat Engine Requirements
- Fabrication Process Scaled Up to Production
- Engine Component Fabrication Demonstrated
- Expanded Database, Including Tensile Properties
- Production Material Under Evaluation by Users: GE/EPRI, AlliedSignal, Solar Turbines, Allison Engines, Teledyne
- Second Generation Material being Optimized

AS800 Strength

- Complete Production Material Database
- Demonstrate Improved Properties of 2nd Generation Material Made by Production Process
- Optimize Gelcasting of AS800 to meet PNGV Thin Wall Component Requirements, e.g. Combustors, Scrolls, etc.

Ceramic Nozzle Production **Demonstration Program**

Subcontract to AlliedSignal Engines

James Wimmer 2525 West 190th Street Torrance, CA 90504 (310) 512-3183

Objectives:

- Scale Up Process for Manufacturing Silicon Nitride Parts to 500/Month Capacity
- Demonstrate 100/Month Production Capability on Turbine Nozzles
- Demonstrate Process Control, Improved Yield and Decreased Cost
- Deliver Turbine Nozzles and Blades to AlliedSignal Engines for Engine Demonstration

Approach/Accomplishments:

Scale-Up and Production Demonstration

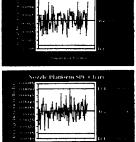
Production Sequence

331-200 Turbine Nozzles

Model 331-200 Turbine

- Slip Cast Nozzle Blank
 - 150 Piece Lot Size
 - AS800 Material
- Bisque Machine Nozzle Shape Versatile
- Current Yield > 85%
- Gas Pressure Sinter Furnace Capacity > 300 Parts
- Final Machine Engine Attachments

331-200 Turbine Blades


- > 450 Hours of Successful Turbine Engine Testing on AS800 Nozzies
- AS800 Turbine Blades Proof Tested in Preparation for **Engine Test**

Process Control

Key Characteristics	Process in Control
Slip Viscosity	1
Presintered Density	1
Presinter Machined Dimensions	1
Densified Dimensions	/
Final Machined Dimensions	*
Mechanical Properties	1

Improved Yields and Cost

1993 Baseline Yield = 25%

Current Estimated Yield = 67%

Process Step	1996 Yield	Process Step	1996 Yield	Process Step	1996 Yield
Casting Drying Presintering	99% 100% 100%	Presinter Machining Densification	87% 98%	Final Machining Inspection	96%* 82%*

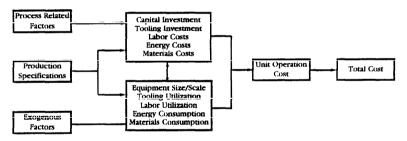
* Estimated

- Complete Production Demonstration of 100 Nozzles/Month
- Compile Final SPC, Yield and Cost Data
- Continue Delivery of Turbine Nozzles and Blades for Engine Endurance Testing

Cost Modeling Analysis of Fabrication Approaches for Silicon Nitride Components

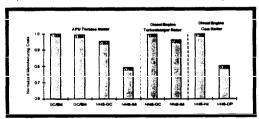
Barry S. Draskovich AlliedSignal Ceramic Components 2525 West 190th Street Torrance, CA 90504 (310) 512-5703 Julie M. Schoenung, Ph.D. California State Polytechnic University Chemical and Materials Engineering Pomona, CA 91768 (909) 869-2622

Objectives:


- Develop a Cost Model to Evaluate Competing Diesel Engine and Turbomachinery Ceramic Component Fabrication Methods
- Determine Relative Benefit/Trade-Offs of Near-Net-Shape Forming Methods vs Machining of Billets
- Analyze and Determine the Potential Low-Cost Forming Method for Specific Components and Component Families
- **●** Identify Aspects of the Manufacturing Process that are Cost-Controlling

Approach:

Components Studied:


- Diesel Engine Cam Roller Follower 500,000 units/yr
- Diesel Engine Turbocharger Rotor 50,000 units/yr
- Auxiliary Power Unit Turbine Stator 5,000 units/yr
- Fabrication Processes Include Slip Casting (SC), Gelcasting (GC), Injection Molding (IM), Dry Pressing (DP), Employing Near Net Shaping (NNS) or Billet Bisque Machining (BM)

Technical Process Cost Model Methodology

Accomplishments:

Preliminary Cost Analysis Results for Various Fabrication Techniques for Target Components

- Near Net Shape Forming Techniques Show Cost Advantages Over Bisque Machining of Billet Stock
- Yield Improvements and Process Equipment/Manpower Scaling Result in Large Reductions in Manufacturing Costs
- Major Contributors to Manufacturing Cost Include Direct Labor, Materials, Equipment, Cost of Capital

- Continue Analysis of Target Components, Refining Model Inputs to Realistic Production Values
- Modify the Model to Allow Analysis of a Wider Range of Components
- Complete Validation of the Model